
FTPMAN Snapshots
Fast digitized data

Tue, Apr 8, 1997
Introduction

Snapshots are captured digitized waveforms, in this case acquired via the
Fast Time Plot Manager (FTPMAN) protocol used in Acnet at Fermilab. This
document describes the implementation of support for Swift digitizers, designed to
operate on 8 channels at rates of up to 800KHz, and Quick digitizers, a family of
commercially-available VME boards with sample rates in the range 1–10 MHz.

IRM 1KHz digitizers—for slow waveforms
Internet Rack Monitors (IRMs) have supported 1KHz digitized data accessible

via Acnet's Fast Time Plot Manager (FTPMAN) for some time via the continuous plot
option. The selective data return feature of the protocol can be used to limit the
return of data to the time window defined by the user for the plot in order not to
inundate the host with data ineligible to be plotted. The IRM hardware digitizes all
64 A/D channels at 1KHz, placing the results in a 64K-byte circular buffer memory.
As a result, any number of users can request such data without interference. Users
share access to the data as easily as they share use of the clock on the wall.

Swift digitizers
For faster digitizations, a new analog interface board has been developed that

is called the Swift Digitizer. It supports 8 channels at rates up to 800KHz. It also
has a 64K-byte memory, so that 4K (16-bit) words house the captured waveform for
each channel. A digitize sequence can be triggered by any of the fixed set of Booster
reset clock events (11–17, 19, 1C), which make up accelerator 15Hz, or it can be
triggered by any selected single clock event, in each case plus an optional delay of
up to 65535 µ s. For the case of the Booster HLRF IRMs, for example, one might use a
digitize rate of 100KHz, so that a waveform of the entire RF pulse can be captured in
the 4K-point memory that would cover 40.96 ms.

Digitizer sharing
A simplification in the design of FTPMAN snapshot support could be realized if

the Swift digitizer configuration were considered to be fixed. In that case, each user
would not be able to choose the configuration options for each snapshot taken. After
some consideration of this option, it was decided not to adopt this simplification for
the Swift digitizers. (It was adopted, however, for the Quick digitizers.)

Customized data acquisition
Allowing the client to specify the parameters of the digitizer is more user-

friendly from the point-of-view of an individual client user. It may not, however, be
user-friendly to another user who is looking at the same waveform—or another from
the set of 8 signals attached to that digitizer. What is needed, therefore, is a
manager of the snapshot digitizations. The local application SWFT provides such
management. To do so, it needs to detect when a new waveform has been collected.

FTPMAN Snapshots p 2
assuming the maximum 800KHz digitize rate, or as slowly as 0.65 seconds (about
ten 15Hz cycles) assuming the minimum rate of 6.25KHz. Use of the not-busy
interrupt from the Swift digitizer IndustryPack (IP) board can enable detection of a
complete new waveform; however, this feature didn't work in early versions of the
hardware already installed. A second approach is the delayed timer interrupt that,
except for the external trigger case, indicates that the digitization sequence has
begun and that the memory address register is counting. By watching this address
register until it becomes large enough to include the number of waveform points
requested, SWFT notices when the digitization sequence is complete and sets a
completion state variable accordingly. FTPMAN, in turn, notices this completion
status set by SWFT. Then FTPMAN captures the waveform into an allocated block of
memory for later perusal by the client.

In order for SWFT to maintain proper control over the collection of new waveforms, it
must manually arm the digitizer. (One might rather use the auto-trigger control bit,
but it can allow a new digitize sequence to be initiated by a second trigger without
guarantee that the server has noticed that the data from the previous waveform has
been collected and has a chance to capture it.) Manual arming allows the server to
control the hardware activity so that it the waveform data can be captured before
another trigger occurs to alter it.

FTPMAN snapshot protocol
The FTPMAN protocol for snapshots works in the following way: The client

sends a request that identifies the common set of parameters—event, delay, sample
rate, and number of data points—for up to four signals whose waveforms are to be
collected. The server IRM checks whether the indicated signals have Swift digitizer
support. Status messages, returned to the client a few times a second, include the
set of parameters honored for the measurement, and they announce progress on
snapshot data collection—waiting for event+delay, waiting for digitizations, done.
When a snapshot is complete, the entire waveform is collected and saved for client
retrieval, thereby allowing the digitizer hardware to be operated on behalf of other
snapshot users. When the client receives status indicating a given waveform is
complete, it issues one-shot requests to collect the data from each signal, in
response to which the server merely copies from the captured buffer for the given
waveform. When a cancel message is received, or a new request is received from the
same client node/task, the server resources associated with that request are freed.
As an option, before a client cancels a request, it can ask that the snapshot be
repeated, without formally making a new request. In this case, the server waits for
another snapshot to occur and captures the data again, re-using the same resources
already reserved for the original request.

Simplifying assumptions for parameter selection
In order to make an easy user model for parameter selection, a few

FTPMAN Snapshots p 3
delay timer is used. (This means that neither an external trigger nor the CPU itself
initiates a digitization sequence.) Assume that only 1MHz resolution is used for the
timer delay. Assume that a channel's value can be encoded automatically into the
appropriate 3-bit code to pick the rate. We have the following four parameter values
that describe the choices made available to the user:

event#
delay in µ s
rate in KHz
#points

A value of event=FF means that the 15 Hz fixed set of Booster reset events is
selected, else use the event indicated. A value of rate=0 means that the digitize rate
signal is external, else it will be found among the values 800, 400, 200, 100, 50, 25,
12, 6. The delay always fits in the range 0–65535 µ s.

A local application (SWFT) manages the operation of the Swift digitizer. It does the
manual arm when it is ready to collect a new waveform. It examines the user-
selectable channel parameter values to control the hardware accordingly.

Message queue scheme
The SWFT local application gets its instructions from a message queue. At a

time when it believes that the hardware buffer is dormant and all active requests
have captured the data, it reads from the message queue. If a new command is
found, the parameter values therein specify the event, delay, rate, and #points to be
measured. These values are loaded into the Swift digitizer registers, the current
delay interrupt counter is sampled, and an arm is delivered, thus enabling the
board to detect a trigger that starts the digitization process. Once the event trigger
occurs, and the delay times out, an interrupt is generated that merely increments
the delay interrupt counter. When SWFT notices that the interrupt counter has
changed, it moves into a different state of monitoring the memory address register.
When it notices that the memory address is high enough, it knows that the digitiz
ation is complete, and it sets the state variable to zero to so indicate. (Since auto-
trigger is not used, the hardware memory will remain stable until it is re-armed.)

For the FTPMAN local application, when a request for a snapshot is received, the set
of parameters specified is loaded into the message queue. Status is returned to the
requester a few times a second, giving the state of the measurement progress. When
the memory is stable, the status is changed to reflect that fact, and the desired
waveform data is copied into an allocated memory block for expected client-directed
perusal via one-shot requests. From this point, since the waveform data has been
captured, FTPMAN is no longer holds up SWFT checking the message queue for
another set of parameters and making a new measurement.

Duplicate snapshot parameters in queue

FTPMAN Snapshots p 4
determine whether the new entry needs to be added at all. If the queue contains a
given set of parameters that matches the set to be entered, there is no reason to
queue up the new set, as it has yet to be used. If multiple users select the same
parameters, they share viewing the same data. If their parameters are different,
however, they will be served by SWFT in turn according to their order in the queue.

FTPMAN plan
Accept parameters, place into queue, and wait for SWFT to signal completion

via a state variable. When completion is signaled, check the parameters of the
measurement. If they match the current request, then capture the needed data, else
await the next completion. During the wait for completion (and match), report to
requester the progress status at 15Hz. Once the waveforms are complete, slow down
the response rate to 2 Hz. Entertain client requests for the data points via one-shot
requests. If a re-measure command is received, queue up the same parameters
specified in the original request. When a cancel request is received, or a new request
is received from the same task, free all old allocated resources. Note that the
queuing may not have to take place, if the parameters match something already in
the queue. But FTPMAN must wait for a new measurement to be made; it cannot
supply stale data that was already measured before a request is received. If two
FTPMAN users are operating simultaneously, and if they are using the same
parameters, then each will see the same data sets, because each will notice the
same completion status from SWFT at the same time. Since the parameters match,
each will capture the same data points. (Actually, they might be capturing different
waveforms on the same board, so that the data sets might differ.)

SWFT plan
Parameters needed for SWFT are:

enable bit#
status chan# (, event chan#, delay chan#, rate chan#, #points chan#,

interrupt counter chan#)
address of Swift digitizer registers (2 words)

The status chan# is the initial one of a sequence of diagnostic channels, so that only
four words of parameters are needed altogether.

At initialization, create the "swft" message queue if not already available. Enable
delay timer interrupt. Set interrupt counter to 0. Set state 0.

Perform the following actions at 15Hz:

State 0:
Read from queue. If queue entry found, and if parameters ok, load into registers on
Swift digitizer IP board. Update status and a copy of the parameters in channel

FTPMAN Snapshots p 5
at least the next cycle.

State 3:
Watch delay interrupt counter. When value changes, a timer delay has finished
following an event trigger, and the digitization sequence has begun. Go to State 2
immediately.

State 2:
Watch memory address register. When it becomes >= #points*8, stop, record
completion status. Go to State 0 until next cycle. (In between, FTPMAN notices this
completion status by detecting a nonzero to zero change in state#. It then checks for
a match with a given request's parameters, and if there is a match, it captures the
waveform data requested from the hardware memory.)

Watching the state variable cycle by cycle, it is 0 until there is a command found in
the message queue, at which time it changes to 3. It will remain at 3 until the
selected clock event occurs and the delay has timed out. If by the next cycle the
digitizing process is not complete for the number of points requested, the state will
be set to 2, else it will change to 0, signalling that the waveform(s) are ready to be
sampled. Only a single cycle is guaranteed available for FTPMAN to capture the
data, so that SWFT will be free to setup another snapshot from another command.

Use of data stream as message queue
An advantage to using a message queue implemented via a data stream is

that it is easy to adapt the setting log page application to show the contents of the
queue as a diagnostic log. The structure for both the setting log and network frame
data streams is a circular buffer of 16-byte records. In each case, the last 8 bytes
give the time-of-day. For this snapshot data stream queue, we can thereby capture
the time-of-day of recent snapshot activities. The first eight bytes include the event,
delay, rate, and #points. The SWFT page application makes a data request for the
data stream called SWFTCMND, formatting the results for display.

When an entry is to be placed into the data stream queue, a means of checking the
previously queued, but not yet complete, entries is needed. As stated before, we
need not add an entry to the queue that matches one already waiting. If DSWrite
were used to write into the message queue, the matching function would not apply.
So FTPMAN uses a queuing routine that checks for a duplicate entry first.

There is no way to detect a full data stream by definition; although there is an IN
pointer, there is no OUT pointer. One must be sure that the queue cannot ordinarily
overflow, although an error return can be used if a new entry cannot be placed due
to the queue being full. This isn't expected to be a problem, especially with logic that
doesn't repeat entries that are already waiting.

FTPMAN Snapshots p 6
A communication area that is defined in the header of the data stream queue is
used to store the information about the current digitization parameters—the status,
event, delay, rate, and time of queuing. In addition, an OUT pointer is maintained so
the matching can be done against a tentative set of new parameters. The SWFT local
application advances OUT only after the waveform is stable, so that a new matching
parameter set can be queued as soon as the current one is finished, in case a user
wants to repeat the same snapshot that was just completed.

Cancelling a snapshot request
If the host cancels a snapshot request, it is desirable to remove it from the

queue in the case that it was not complete. This is especially important if the
request that was queued specified an event that will not occur. For as long as such a
request is active, the status returned will indicate that the event has not occurred.
Without removing it from the queue, any other snapshot command, either already
queued or yet to be queued, will be held up. Since the command that is current is
still in the search range, we should find it with a search that refers to the common
OUT offset in the diagnostic area of the data stream queue header.

But finding it in the queue is not enough to be able to remove it. Because a
command that is already queued that matches a new one does not itself get entered
in duplicate, a use count is necessary to keep track of how many users share that
command. The high byte of the word in the command that specifies the 8-bit event#
can be used for this purpose. Use the upper two bits for status information about
the entry, to be described later. Then the lower 6 bits can be used as a use count.
When a command is to be queued that matches one already in the queue, merely
bump the use count and refrain from entering a duplicate command. When a
request is cancelled, and its command is still in the queue, decrement the use count.
If that decrementing makes the use count zero, then mark it deleted. We can't
actually remove it from the queue because of the nature of the queue. But we can
mark it so that when FTPMAN reads from the queue and finds an entry so marked, it
can simply ignore it and look for the next one. Also, while SWFT is watching the
current command to detect when it finishes, if it notices that the current command
in the queue becomes marked for deletion, it should abandon waiting for the current
one to finish and immediately read from the queue again to find another snapshot to
initiate.

If a user does not cancel a snapshot request, the allocated resources remain in use,
and there is no protection for a user requesting a snapshot that waits on an event
that never occurs. It is not clear how to deal with this potential problem. One
cautionary step can be taken, however. When a request is received that specifies a
clock event# that has not occurred in a long time, it can be refused and an error
status returned. For IRMs, all clock events are known. The relative time for each
clock event is recorded, in µ s units, and the delta time between the last two such

FTPMAN Snapshots p 7
occurrence, this information is cleared. So if a new request is received that requests
a snapshot triggered by a given event, but the delta time field in the event table
entry for that given event is zero, the request can be rejected. This may perhaps be
inconvenient for a user who wants to set up a snapshot to be triggered when a very
unusual clock event occurs, but if he is allowed to do it, no other snapshots can be
made for any of the Swift digitizer data in that IRM as long as that special case
holds up the command queue.

Status of Swift command queue entries
Status of each command queue entry is maintained in the upper two bits of

the word containing the event# parameter. The SNAP page application shows this
information symbolically. The four states and symbols used are as follows:

00 command queued (blank)
01 command current, waiting –
10 command complete .
11 command aborted by cancel *

The entry date and time is updated according to when the status was last updated.

Server mode
For a well-distributed system , a data request that includes a list of devices

from many different front end nodes can result in heavy network reply activity
directed to the requesting client node. Client nodes in Acnet have been declared to
be non-real-time nodes. They have many jobs to do in supporting X-windows and
user interfaces, so that they cannot be expected to handle too much network traffic.
Therefore server mode was implemented for the IRM nodes and other local stations.
With server mode supported, a client node can send a data request that includes
many devices to a single server node, and it will subsequently receive replies only
from that single node, representing the composite of replies from possibly many
other contributing nodes that hear about the request from the server node. As a
result, network-handling requirements are minimal for the client requesting node.

Server mode is supported for FTPMAN requests. This means that a server node may
receive a request for data that is actually sourced by another node or set of nodes.
An SSDN is received for each device in a data request, whether it be for RETDAT or
FTPMAN. The second word in every SSDN supported by IRMs and/or local stations is
the source node#. This allows a node that receives a data request to discover what
nodes source the data. By analyzing this information, it can determine how the
request will be handled, whether server support should be applied or not. If all the
devices in a request are local devices, or if the request was received via multicast
addressing, then direct support is granted to the request; the node replies with only
its own device contributions to the request, and any devices in the request that are
sourced from other nodes are ignored. On the other hand, if the devices in the
request are sourced from at least one node that is not the local node, and if the

FTPMAN Snapshots p 8
granted to the request.

Server mode means that the node receiving the request must act as a server. It
forwards the request to a target destination. If only one non-local node is
represented in the received data request, then the target is that node. If more than
one non-local node is represented in the request, then the target is a multicast
address that reaches all candidate nodes. Replies subsequently received from the
contributing nodes are used to build up the ultimate reply to the original requesting
client node. In order for this to work, the assumption is made that all nodes operate
simultaneously; they are each triggered at 15 Hz at the same time. A server node
assumes that 40 ms into the current 15 Hz cycle is the deadline for replies that are
received from the contributing nodes. At that time in each cycle, if it is the cycle on
which a reply is due the client, server mode replies are transmitted. For the special
case of one-shot requests, in order to improve response time, server replies are
delivered as soon as the last contributing node has replied to the server.

The above description of server mode is a property of any node. Any node can
support a server-style request, as all nodes run the same software. In practice,
however, in the case of Booster HLRF as an example, only one node is identified in
the central Acnet database as the source for all Booster HLRF data. This means that
all Acnet requests for Booster HLRF data target that single node, which in turn
forwards the request to and deals with the subsequent replies from up to 18 other
nodes. This can cause a lot of network activity, but IRMs are real-time front ends.
They use the network efficiently, especially in consolidating multiple reply
messages that target the same node into common datagrams. Note that the replies
to multiple requests that pass through the common server node will, if due on the
same cycle, similarly be consolidated into common datagrams to the server node.

The FTPMAN protocol imposes special considerations in providing server node
support. According to the FTPMAN protocol specification, only a single request from a
given client task can be supported by a given front end. If a subsequent request is
received from the same client task, while a previous FTPMAN request from that task
is active, the previous task must be cancelled and the new request then accepted.
But when forwarding an FTPMAN request, a server node must not merely forward
the clients task name, which is part of the actual FTPMAN request message, not part
of the Acnet header. (If it did, there is danger that another client node might also
send a request that used the same task name through the same server node, and
when the server node forwarded the request, previous requests would be
automatically cancelled by the contributing nodes that were in common between the
two requests.) The server node must therefore make up a unique task name and
replace that which it received from the client, before forwarding the request to the
contributing nodes. Not only that, but the server node must also make up its own
message id to be used in the Acnet head, not merely pass on the same one received

FTPMAN Snapshots p 9
same message id as the task name as well, as that value will be unique across
multiple requests that are forwarded from the server node.

An additional wrinkle to server support for the FTPMAN protocol stems from the
data retrieval request specification. A data retrieval request refers to an already
active snapshot request. This correlation is based upon a match with an active
FTPMAN request that was received from the same client node and which specified
the same task name in the request message. A server node, in forwarding a data
retrieval request, must therefore use the same task name that it made up when it
forwarded the original snapshot request, in order that the contributing node may
also make the proper correlation with the original snapshot setup request. And
because the contributing nodes, in this implementation, squeeze out of the request
all devices that are non-local, the data retrieval request, when forwarded by a
server node, must renumber the device index (range 1–4) according to the single
targeted contributing node. Note that a single node must be targeted rather than a
multicast target address that may have been used for the forwarding of the original
snapshot setup request.

Quick Digitizers
Quick digitizer hardware is used in the Linac area to digitize waveforms at

rates typically between 1–10 MHz. The Linac control stations consist of a VME crate
with a 68020-based CPU board and about 4 other boards. The Quick digitizer is a
VME board that supports 4 channels, all driven at a common sample rate. There is
memory enough for 64K samples for each of the four channels. A gate duration
register holds the number of points to be digitized, so that one needn't always
digitize 64K samples. The Linac beam pulse may be only about 50 µ s in length. If a
board operates at 5 MHz, this would be covered by 250 points, rather less than 64K!

Consider how to interface these QD boards with FTPMAN. Each board is installed to
operate in a certain way, so that the user should not be expected to alter its
parameters. This is a great simplification of the problem. It means we do not need to
implement a Quick digitizer command queue and manager program, as was done
for the Swift digitizer support. But we do need to detect when a waveform is
complete, as the triggering event may not occur at 15Hz. When a user of FTPMAN

makes a request for a snapshot, he has a right to expect that only new data will
result, not stale data. Upon receipt of a snapshot request, by examining the gate
duration register and placing a data word at the end of the indicated waveform
memory, FTPMAN can notice when the value is overwritten, thus indicating that the
desired waveform is complete so that it can be captured to await the host's one-shot
data retrieval requests. Note that multiple requesters do not interfere with each
other, because of the look-but-don't-touch approach taken; the hardware registers
are not modified. This means that multiple users are always assumed to be using
the same parameters, and sharing the data is an automatic benefit. Still, because of

FTPMAN Snapshots p 10
a separate buffer to satisfy leisurely data retrieval requests from the client.

With two possible types of snapshot hardware, there is the problem of determining
which the user wants to use. If we assume that a given system would not have both
Swift digitizer and Quick digitizer hardware for the same channel, then there
should not be a problem. We may want to limit all devices in a request to use the
same type of hardware. The two types of digitizers won't likely operate at the same
sample rates.

Protocol support in toto
For the complete implementation of snapshot support for IRMs, then, both

non-server as well as server support was written for the new snapshot setup request
(typecode 7), the data retrieval request (typecode 8), and the snapshot miscellaneous
request (typecode 5). The latter is used for sequential data retrieval pointer reset
and also for restarting the same snapshot that was used in the original request.All
of this was done for both Swift and Quick digitizers.

In addition to the FTPMAN server support itself, three other programs were written
to assist during the development. The first is the SWFT local application that
manages the Swift digitizer command queue, as mentioned above. It accepts
commands from the queue and passes them to the Swift digitizer hardware to
perform each waveform measurement in turn, allowing one cycle for a user such as
FTPMAN to capture the waveform data it needs from the hardware memory, before it
examines the next entry, if any, in the command queue. It also maintains a
communications area in the header of the data stream SWFTCMND that functions as
the command queue, indicating the current state of the snapshot progress. The
FTPMAN support monitors this state information to provide continuous status
replies for the requesting client.

A page program called SWFT was also written to monitor the contents of the
command queue. Because the command queue was implemented as a data stream,
it can display It uses the listype for accessing data stream queue records to collect
the most recent Swift commands found in the queue, presenting it in a form similar
to what was done for the setting log activity and for recent network frame activity.
The status of each command is also shown, so that one can monitor the successful
completion of each command. If a command is aborted, such as when a snapshot
request is cancelled before the command has been fulfilled, it will be so indicated in
the resulting command list.

Another page program called SNAP was written to exercises the snapshot client
protocol for testing the functionality of the FTPMAN snapshot support. The present
version only supports a single device in the request, but it can be sent for both the
server case and the non-server case. When the returning status updates indicate

FTPMAN Snapshots p 11
the first part of the data and displays it in hex. This snapshot test page program
also supports the request for plot class information as well as the request to restart
an already existing snapshot request.

Program sizes
The following list shows the current size of each supporting high level

language program relating to the implementation of FTPMAN snapshots for IRMs.
Program #lines Code

LOOPFTPM 2710 16K

LOOPSWFT 583 2K

PAGESWFT 680 4K

PAGESNAP 697 4K

